# Comanche Station Bottom Ash Treatment System Discussion March 18-19, 2021







# Groundwater Monitoring Issues/Questions

- Updated table and/or plots with all data collected to date
  - Export from database available
  - More user-friendly table in progress
- Has a statistical method been identified for SSIs?
  - Yes Upper Prediction Limit (UPL)
- BTVs established and/or SSI evaluation completed?
  - Bottom ash pond
    - W-2A background well BTVs calculated
    - SSI for boron in two shallow adjacent colluvial wells
    - No boron SSIs in downgradient/property boundary wells
    - pH SSIs in multiple wells; parameter not unique to bottom ash
  - Landfill
    - MW-3 and MW-5 background data pooled, BTVs calculated
    - No SSIs in downgradient wells
    - 2 SSIs in cross-gradient wells completed in different geologic unit
- Assessment monitoring 1<sup>st</sup> early April, 2<sup>nd</sup> mid-May



#### Upper Prediction Limits for Detection Monitoring for each Appendix III Constituent in Comanche Pond

W-2A as background Well

| Туре       | Constitue<br>nt | Unit |    | January 12-14, 2021 DM Sample Event |      |       |      |      |       |       |       |       |  |  |
|------------|-----------------|------|----|-------------------------------------|------|-------|------|------|-------|-------|-------|-------|--|--|
|            |                 |      | n  | BTV <sup>4</sup>                    | W-3  | W-5   | W-5B | W-6  | W-4   | W-1   | W-7   | W-9   |  |  |
| Appendix I | Boron           | mg/l | 8  | 4.00                                | 0.57 | 3.8   | 1.   | 7.5  | 2.4   | 4.1   | 2.2   | 1.9   |  |  |
| Appendix I | I Calcium       | mg/l | 81 | 657                                 | 300  | 200   | 480  | 210  | 420   | 420   | 440   | 380   |  |  |
| Appendix I | Chloride (a     | mg/l | 81 | 897                                 | 23   | 560   | 110  | 180  | 480   | 760   | 770   | 360   |  |  |
| Appendix I | I Fluoride      | mg/l | 81 | 578                                 | 0.68 | <0.5  | <0.5 | 1.7  | 4.4   | 3.1   | <0.5  | <0.5  |  |  |
| Appendix I | II pH (field) ( | su   | 81 | 6.22                                | 7.74 | 7.26  | 7.07 | 7.36 | 7.68  | 7.37  | 6.61  | 6.87  |  |  |
| Appendix I | I pH (field) (  | su   | 81 | 6.73                                | 7.74 | 7.26  | 7.07 | 7.36 | 7.68  | 7.37  | 6.61  | 6.87  |  |  |
| Appendix I | I Sulfate (as   | mg/l | 81 | 86,791                              | 1300 | 13000 | 3600 | 4800 | 29000 | 29000 | 48000 | 11000 |  |  |
| Appendix I | I Total Disso   | mg/l | 81 | 202,620                             | 2000 | 16000 | 5300 | 6200 | NA    | 42000 | 69000 | 16000 |  |  |

| W-11  | W-12  |
|-------|-------|
| 1.1   | 1.3   |
| 370   | 160   |
| 350   | 870   |
| 2.7   | <0.5  |
| 6.89  | 6.83  |
| 6.89  | 6.83  |
| 14000 | 16000 |
| 20000 | 23000 |

| Upper Prediction Limits for Detection Monitoring for each Appendix III Constituent in Comanche Pond (based on background wells MW-3 and MW-5) |      |    |                  |                |                                   |                                  |                                    |                  |       |                                     |       |       |       |       |      |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------|----|------------------|----------------|-----------------------------------|----------------------------------|------------------------------------|------------------|-------|-------------------------------------|-------|-------|-------|-------|------|-------|-------|
|                                                                                                                                               | Unit |    | No. Below<br>MDL | % Below<br>MDL | ProUCL's<br>Best Fit <sup>2</sup> | HDK's Recommendations            |                                    |                  |       | January 12-14, 2021 DM Sample Event |       |       |       |       |      |       |       |
| Constitue<br>nt                                                                                                                               |      | n  |                  |                |                                   | Per-Test<br>FPR (a) <sup>1</sup> | No. of<br>Verificatio<br>n Samples | BTV <sup>4</sup> | Notes | MW-18                               | MW-28 | MW-3  | MW-48 | MW-S  | MW-6 | W-11  | W-12  |
| Boron                                                                                                                                         | mg/l | 18 | 0                | 0%             | ral; Normal                       | 0.0016                           | 0                                  | 6.65             |       | 1.5                                 | 2.1   | 2.2   | 0.49  | 1.3   | 2.1  | 1.1   | 1.3   |
| Calcium                                                                                                                                       | mg/l | 18 | 0                | 0%             | parametric                        | 0.0001                           | 2                                  | 470              |       | 120                                 | 150   | 160   | 510   | 210   | 430  | 370   | 160   |
| Chloride (a                                                                                                                                   | mg/l | 18 | 0                | 0%             | parametric                        | 0.0001                           | 2                                  | 1,800            |       | 410                                 | 580   | 360   | 200   | 1600  | 260  | 350   | 870   |
| Fluoride                                                                                                                                      | mg/l | 18 | 5                | 28%            | na; Normal                        | 0.0016                           | 0                                  | 444              |       | 1.8                                 | 1.3   | <0.5  | 0.17  | <0.5  | 0.25 | 2.7   | <0.5  |
| pH (field) [                                                                                                                                  | su   | 18 | 0                | 0%             | al; Normal                        | 0.0016                           | 0                                  | 6.32             | (*)   | 6.77                                | 6.81  | 6.94  | 6.82  | 6.9   | 7.42 | 6.89  | 6.83  |
| pH (field) (                                                                                                                                  | su   | 18 | 0                | 0%             | nal; Normal                       | 0.0016                           | 0                                  | 7.35             | (*)   | 6.77                                | 6.81  | 6.94  | 6.82  | 6.9   | 7.42 | 6.89  | 6.83  |
| Sulfate (as                                                                                                                                   | mg/l | 18 | 0                | 0%             | parametric                        | 0.0001                           | 2                                  | 42,000           |       | 19000                               | 37000 | 36000 | 3000  | 18000 | 4200 | 14000 | 16000 |
| Total Disso                                                                                                                                   | mg/l | 18 | 0                | 0%             | Lognormal                         | 0.0016                           | 0                                  | 200,778          |       | 25000                               | 44000 | 51000 | 5900  | 24000 | 6100 | 20000 | 23000 |

#### Plan/schedule to locate and sample downgradient domestic wells



# Plans and timing regarding locating and sampling downgradient domestic wells

- Phased step out approach
  - CCR Rule and technically appropriate
- wells installed in 2020
  - 6 south and east of pond
  - 2 dry, 4 sampled
  - Limited impact in shallow colluvial groundwater adjacent to pond
  - Concentrations less than background in downgradient wells at property line
- Nature and extent is bounded
- Cross-sections from the CCR units to the St. Charles River (N-S)?

#### Impacts of continued use of pond?

- Anticipate no additional impacts to groundwater
- Pond is 3 acres and has been in service for over 40 years
- Impacts localized in two adjacent shallow wells in colluvium
- No boron SSIs further downgradient of the pond and at property line
- Additional weeks of operation would not exacerbate
- How/when would Xcel model this?
  - Results don't suggest it is needed
  - Recommend we continue to follow the steps of the CCR Rule
  - Mathematical hydrogeologic model would take considerable time

#### Tracking bottom ash quantities

- Bottom ash total ~ 30,000 tons/year
- Bunker
  - Ash slurry water contains <1% ash solids</li>
  - Captures 75+% of total ash
  - Material is ~ DOT Class 6 road base
  - ~ 60-65% beneficially used, cement
  - 5 days/week; ~ 4 trucks/day
  - ~ 24,000 tons/year, good balance w/% solids in
- South ~ 1/3 pond area
  - Monthly
- North ~ 2/3 pond area
  - Annually
  - Mostly silt and vegetation
- Pond cleanout ~ 7,000 tons/year



# Comanche Station Units 1 & 2 Bottom Ash Concrete Bunker (front and side views)



## Groundwater Evaluation Summary

- First detection monitoring January 2021
- BTVs calculated as Upper Prediction Limit (UPL)
  - SSIs for boron in two shallow colluvial wells adjacent to pond
  - Impacts at pond localized; boron in downgradient wells less than BTV
  - No SSIs in down-gradient wells at landfill
- Nature and extent limited
- No additional impacts from pond anticipated
- Results support no potential impact to off-site wells

Bottom Ash Treatment System Update

## Original System Design Concept

- September 25, 2020 EPA response
  - Parts A and B determined not viable
  - Very early design phase
  - Evaluating pre-packaged treatment systems
  - Initiated treatability study for system design and treatment specifications
  - Anticipated continued use of existing bunker
    - Bunker effluent to be routed to new treatment system
    - Bunker for flow equalization and bulk solids removal
    - Flocculant addition and clarifier tank to settle finer solids
  - Confirmed that the major system components were available
  - Schedule was ambitious, believed we could meet it based on info at that time
  - NPDES permit modification appeared to be longest lead time item



## System Design Progression

- 4<sup>th</sup> quarter 2020 design-build approach
  - Bid pre-packaged treatment system
    - Simple, reliable, performance guarantees, flocculant testing
    - Requires new significantly larger bunker for flow equalization
    - Larger footprint than original system concept; new site higher elevation
  - January 2021 temporary system needed to meet schedule
    - temp system not as 'elegant' as the pre-packaged system; numerous independent components connected to make a 'system'; non-automated
    - Larger footprint than pre-packaged system
    - January 31st ceased non-CCR flows 133 gpm continuous, ~ 200 gpm episodic
      - 2,000 gpm = total system flow rate; diverted non-CCR flows ~ 7%
  - Balance of plant
    - New larger bunker (~5 x existing bunker size)
    - Multiple borings under rail and water supply/return lines, electrical duct bank and local control center, chemical feed system, makeup water tank, thickener, dewatering tanks, high pressure feed pump in plant



#### Common System Components

- Bottom ash sluice water piping (~800') to treatment location
- Treated effluent discharge piping (~1,000') to the polishing pond
- Water supply piping (~1,000') to the chemical feed building
  - 3 horizontal borings under rail crossing
- High pressure pump added in plant to address increased elevation
- Chemical feed building to mix and distribute coagulant and flocculent
- Zone 4 of bunker to transfer flow between treatment steps
- Electrical duct bank (~400 feet), to new centralized power distribution center to supply 1250 kVA

#### Temporary and pre-packaged systems status

#### Temporary

- Major equipment arriving this week
  - Total Clean tank, conveyors, 16 clarifiers, 8 clear wells, 2 bag filter trailers
  - Underflow thickener, dewatering tanks, chemical feed skids, buildings, piping
  - Weather delays deliveries from Denver, site access conditions
- Construction/installation
  - Excavations complete, bldg. foundations done, rebar/concrete in progress, zone 4 bunker floor pour next week, tank foundation ready for concrete,
  - Boring under rail complete; HDPE pipe welding on site in progress; install begins next week
  - High pressure pump in plant to be installed

#### Prepackaged

- Major equipment on site mid-May
  - Operation date contingent on completion of bunker zones 1-3
  - 3 weeks to install, test, commission
  - Any float in schedule has been consumed

















#### Schedule for conducting tie-ins

- Temp System bunker zone 4 temp system mid-late April
- Long lead items arrive mid-late May
  - Manufacturing backlog in all market sectors even for common items
  - Specialty valves, actuators, makeup water tank, control panel, pumps
  - Alternative materials, parts, sources to expedite schedule
- Temp System operational mid-June
- Bunker zones 1-3 pre-packaged system
  - Bunker all zones = 175' x 45' x 10'
  - Rebar, sequential concrete cure times, floor, walls
    - Heated enclosure, 3-day cure testing
  - Sealing, leak testing, backfill
- Bunker 1-3 concrete mid June
- Bunker 1-3 electrical early July
- Bunker 1-3 piping late July

## Why Have Costs Increased?

- Pre-packaged system
  - September 2020
    - \$885,000 \$1.2 million annual operating cost
    - Pre-design rough estimate
  - January 2021
    - \$2.1 million annual operating cost (\$4.2 for 24 months)
    - more detailed design, contractor bid
    - operating cost includes monthly system rental fees
    - increased labor to operate 24 x 7 x 365
    - 2-person crew on night shift, safety
- Temporary system for 90 days operation ~ \$5 million
- Site prep (foundations, piping, bunker, etc.) costs = ~ \$3 million

#### Possible Administrative Order on Consent

Does any entity other than Public Service Company of Colorado (PSCo)

- own Comanche Station units 1 and 2? No
- operate Comanche Station units 1 and 2? No
- own the bottom ash impoundment? No

Does any entity other than Public Service Company of Colorado operate the bottom ash impoundment?

- PSCo is the sole operator of bottom ash discharges from the plant to the pond
- PSCo is also the sole entity in control of when bottom ash discharges to the pond will cease
- A PSCo contractor maintains the pond by regularly removing bottom ash from the bunker/pond system

# Discussion